老熟妇视频,99久久综合欧美精品二区,国产视屏精品系统分享,伊人婷婷激情在线

浙江國(guó)檢檢測(cè)

首頁(yè) 檢測(cè)百科

分享:耐蝕涂層失效監(jiān)測(cè)方法及失效機(jī)制研究進(jìn)展

2025-03-13 09:55:01 

以鋼鐵為主的金屬結(jié)構(gòu)在長(zhǎng)期服役過(guò)程中會(huì)遭受?chē)?yán)重的腐蝕,這不僅會(huì)導(dǎo)致結(jié)構(gòu)壽命縮短,維修成本增加,甚至還會(huì)引發(fā)安全事故和環(huán)境污染。有機(jī)涂層因經(jīng)濟(jì)高效等特點(diǎn)廣泛應(yīng)用于金屬防護(hù)。然而,有機(jī)涂層并不會(huì)為金屬基體提供永久性的保護(hù)。在自然因素(光、熱、氧或臭氧、雨水、鹽分和其他腐蝕性介質(zhì))和外部應(yīng)力等因素的共同作用下,涂層會(huì)逐漸降解、脫黏或剝離[1-2]。因此,需采取一些監(jiān)測(cè)手段實(shí)時(shí)或定期檢測(cè)涂層的防護(hù)狀態(tài)和老化程度,以便對(duì)涂層的服役壽命進(jìn)行準(zhǔn)確評(píng)估,為涂層適時(shí)維修或更換提供參考,避免出現(xiàn)成本上升或鋼結(jié)構(gòu)腐蝕損失。在各種涂層老化檢測(cè)方法中,目視檢查最為直接,這是因?yàn)橥繉永匣笤诤暧^上會(huì)表現(xiàn)出起泡、粉化、失色、龜裂等外觀變化。然而大多數(shù)涂層可能在表面出現(xiàn)上述現(xiàn)象之前就已完全失去保護(hù)作用,涂層下金屬基體的嚴(yán)重腐蝕,甚至永久性的結(jié)構(gòu)損傷可能被掩蓋。因此采用高靈敏的無(wú)損監(jiān)測(cè)手段來(lái)感知涂層老化狀態(tài)十分重要。目前,涂層失效評(píng)價(jià)方法主要分為實(shí)驗(yàn)室評(píng)價(jià)和在線監(jiān)測(cè)兩大類。

使用電子顯微鏡[3]、傅里葉變換紅外(FTIR)光譜和拉曼(Raman)光譜等[4],可以研究不同老化階段涂層的形貌、化學(xué)組成和微觀結(jié)構(gòu)的變化[5]。涂層老化在線監(jiān)測(cè)方法主要有電化學(xué)阻抗譜(EIS)(如圖1所示)[6-7]、電化學(xué)噪聲(EN)[8-9]、掃描開(kāi)爾文電極(SKP)[10-12]等電化學(xué)方法,也可通過(guò)測(cè)試涂層結(jié)合力、水接觸角等對(duì)涂層的失效過(guò)程進(jìn)行評(píng)測(cè)。然而,僅憑這些手段很難獲得涂層內(nèi)部老化的動(dòng)力學(xué)過(guò)程,并且對(duì)涂層失效機(jī)制的研究存在一定的局限性。隨著信息技術(shù)的飛速發(fā)展,研究者可以借助數(shù)學(xué)模型和仿真模擬等手段,模擬涂層老化的動(dòng)態(tài)過(guò)程,深入揭示涂層的失效機(jī)制,從而更準(zhǔn)確地預(yù)測(cè)涂層壽命[13-16]。

圖 1自建SECCM-LEIS系統(tǒng)的示意圖[7]
Figure 1.Schematic diagram of the home-built SECCM-LEIS system[7]

筆者主要闡述了有機(jī)涂層老化監(jiān)測(cè)方法以及老化機(jī)制研究等方面的進(jìn)展。首先介紹了實(shí)驗(yàn)室的常規(guī)評(píng)價(jià)方法,以及基于電化學(xué)等的涂層失效在線監(jiān)測(cè)技術(shù);其次闡述了涂層失效機(jī)制與壽命預(yù)測(cè)等方面的進(jìn)展;最后深入探討了涂層監(jiān)測(cè)、失效機(jī)制與壽命評(píng)價(jià)等方面存在的挑戰(zhàn),以期為涂層在線監(jiān)測(cè)、壽命預(yù)測(cè)等方面的研究提供一定的參考。

涂層老化會(huì)造成外觀形貌和內(nèi)部化學(xué)結(jié)構(gòu)發(fā)生變化,從而引起涂層物理化學(xué)性質(zhì)的改變。常規(guī)監(jiān)測(cè)設(shè)備主要包括用于評(píng)估表觀狀態(tài)的色差儀和光澤度儀,用于分析形貌和表面粗糙度的掃描電子顯微鏡(SEM)和原子力顯微鏡(AFM),用于分析涂層元素種類和組成的X射線能譜(XPS);用于分析表面向內(nèi)層分子結(jié)構(gòu)變化的FTIR光譜和激光共聚焦Raman光譜等。

綜合利用這些表征手段,不僅可以在宏觀層面評(píng)價(jià)涂層老化過(guò)程中的功能損傷程度,還能在微觀層面研究涂層老化機(jī)理。WU等[1]為探究環(huán)氧樹(shù)脂和乙烯基酯樹(shù)脂在熱老化、紫外線老化和自然老化條件下的發(fā)黃機(jī)理,借助色度計(jì)、SEM和FTIR等手段,分析了其黃變指數(shù)、表面形態(tài)、質(zhì)量損失、力學(xué)性能(即模量和維氏硬度)、分子結(jié)構(gòu)等。研究發(fā)現(xiàn),涂層老化會(huì)引發(fā)自由基氧化反應(yīng),該反應(yīng)生成的羰基、雙鍵等發(fā)色基團(tuán)是樹(shù)脂發(fā)黃的主要原因。楊建軍等[17]利用SEM、FTIR和XPS等表征手段,研究了防火復(fù)合涂層在海洋環(huán)境中的老化過(guò)程,結(jié)果表明,防火復(fù)合涂層的老化是腐蝕介質(zhì)滲透、涂層水解和熱氧降解協(xié)同作用的結(jié)果。在水和熱的共同作用下,樹(shù)脂中的Si-O和Si-C鍵發(fā)生斷裂,腐蝕介質(zhì)更容易擴(kuò)散到涂層內(nèi)部而使之老化,導(dǎo)致涂層的附著力和防護(hù)性能下降。LI等[18]基于試驗(yàn)分析和密度泛函理論(DFT)計(jì)算,探究了不同濕度條件下二氧化釩(VO2)智能涂層的降解機(jī)理,并重點(diǎn)研究了H2O在降解中的作用。發(fā)現(xiàn)H2O分子的存在會(huì)影響O2在VO2表面的吸附行為、破壞VO2表面的致密結(jié)構(gòu),并且以結(jié)晶水的形式參與相關(guān)反應(yīng),加速涂層的老化過(guò)程。此外,由于涂層化學(xué)結(jié)構(gòu)的變化會(huì)影響材料的力學(xué)性能,也可采用力學(xué)方法評(píng)估涂層的防護(hù)性能。LOOS等[19]研究了碳納米管(CNTs)夾雜物對(duì)聚氨酯(TPU)復(fù)合材料循環(huán)疲勞行為和拉伸性能的影響。發(fā)現(xiàn)CNTs的少量添加使TPU復(fù)合材料的斷裂拉伸性能提高了38%,其在高應(yīng)力、低循環(huán)狀態(tài)下的疲勞壽命提高了248%。

常規(guī)的實(shí)驗(yàn)室評(píng)價(jià)方法仍存在一定的局限性,如這些方法只能提供瞬時(shí)的、靜態(tài)的表征結(jié)果,無(wú)法監(jiān)測(cè)涂層服役過(guò)程中的老化過(guò)程。其次,有些常規(guī)監(jiān)測(cè)方法需要取樣或?qū)ν繉舆M(jìn)行預(yù)處理,可能會(huì)對(duì)涂層在實(shí)際應(yīng)用中的完整性造成不良影響。因此有必要通過(guò)無(wú)損監(jiān)測(cè)方法來(lái)表征涂層在服役條件下的防護(hù)性能,從而為涂層的預(yù)防性維修和更換提供更準(zhǔn)確的指示。涂層在線無(wú)損監(jiān)測(cè)方法主要包括電化學(xué)方法和非電化學(xué)方法兩大類。

電化學(xué)阻抗(EIS)是目前廣泛應(yīng)用的涂層失效監(jiān)測(cè)技術(shù)之一[20-22]。它通過(guò)向涂層表面施加小振幅的正弦波電壓或電流擾動(dòng)信號(hào),引發(fā)涂層/金屬體系產(chǎn)生近似線性相關(guān)的響應(yīng),從而得到EIS圖。采用等效電路對(duì)EIS進(jìn)行分析擬合,可以獲得低頻阻抗、涂層電容、電阻、涂層/金屬雙電層電容等電化學(xué)參數(shù),進(jìn)而對(duì)涂層的耐蝕性、抗?jié)B能力等進(jìn)行評(píng)估。HU等[23]研究了3.5%(質(zhì)量分?jǐn)?shù))NaCl溶液中鋁合金/涂層/溶液體系的EIS,計(jì)算了滲透物種從涂層擴(kuò)散到金屬界面所需的時(shí)間以及H2O和氯離子在涂層中的擴(kuò)散系數(shù),確定腐蝕性物質(zhì)到達(dá)涂層/金屬界面時(shí)的特征阻抗。此外,EIS還可以用于評(píng)價(jià)涂層服役過(guò)程中吸水率的變化。YUAN等[24]研究了硅-環(huán)氧涂層和硅-環(huán)氧二氧化鈦涂層在應(yīng)力下的阻抗變化,研究表明,兩種涂層在拉伸應(yīng)力作用下的失效過(guò)程和擴(kuò)散動(dòng)力學(xué)存在差異,前者的吸水率在拉伸應(yīng)力下沒(méi)有明顯差別,而后者(含填料)的電阻率則隨涂層厚度呈指數(shù)上升。ELKEBIR等[25]將環(huán)氧涂層浸泡在不同溫度的NaCl(30 g/L)溶液中,采用EIS進(jìn)行跟蹤測(cè)試,并利用Brasher和Kingsbury方程評(píng)價(jià)其吸水性,同時(shí)通過(guò)掃描電化學(xué)顯微鏡(SECM)測(cè)量了涂層的膨脹系數(shù)。發(fā)現(xiàn)經(jīng)物理老化涂層的平衡吸水率和溶脹率都較未經(jīng)物理老化涂層的低。

電化學(xué)噪聲(EN)技術(shù)作為一種原位、無(wú)損監(jiān)測(cè)方法,在涂層性能評(píng)價(jià)方面具有突出優(yōu)勢(shì)。相對(duì)于EIS等方法,它無(wú)需對(duì)測(cè)試系統(tǒng)施加外部擾動(dòng)信號(hào)即可獲取所需信息[26-27]。EN技術(shù)操作簡(jiǎn)單、響應(yīng)敏感等特點(diǎn)使其廣泛應(yīng)用于涂層和緩蝕劑性能的評(píng)估。孫曉峰等[28]利用EN監(jiān)測(cè)方法對(duì)7A52鋁合金基體上含不同量石墨烯的復(fù)合涂層進(jìn)行了測(cè)試,基于EN特征參數(shù)研究了鋁合金基體的腐蝕與涂層阻抗的相關(guān)性。LAU等[29]利用EN結(jié)合時(shí)域分析,成功識(shí)別了有/無(wú)缺陷涂層樣品中,環(huán)氧富鋅涂層活化狀態(tài)和鈍化狀態(tài)之間的轉(zhuǎn)變。發(fā)現(xiàn)隨暴露時(shí)間延長(zhǎng),無(wú)缺陷涂層的電位噪聲下降且電流噪聲增加,而當(dāng)?shù)讓愉\表面存在缺陷時(shí),活性鋅的電位噪聲會(huì)隨電流噪聲的減小而升高。

另外,微區(qū)電化學(xué)也可以表征涂層的局部缺陷,其中SKP技術(shù)和掃描振動(dòng)電極(SVET)常用于微區(qū)電化學(xué)監(jiān)測(cè)[30]。WILLIAMS等[31]采用SKP技術(shù),研究了鉻酸鹽對(duì)熱鍍鋅鋼鋅表面聚乙烯醇(PVB)涂層腐蝕驅(qū)動(dòng)分層過(guò)程動(dòng)力學(xué)和機(jī)理的影響,發(fā)現(xiàn)鉻酸鹽從涂層內(nèi)釋放時(shí),對(duì)涂層下的腐蝕過(guò)程具有顯著抑制作用。SHEIKHOLESLAMI等[32]通過(guò)SVET技術(shù)評(píng)估了摻雜硅酸鈣和苯并三氮唑(BTA)涂料體系的耐蝕性。結(jié)果表明,相較于Ca2+交換的SiO2體系,含有BTA的涂料表現(xiàn)出更好的耐蝕性,相對(duì)于BTA含量較低的涂層,BTA含量較高的涂層在5 %(質(zhì)量分?jǐn)?shù))NaCl溶液中浸泡24 h后,涂層劃傷處的陽(yáng)極電流密度更低。GNEDENKOV等[33]結(jié)合SVET和掃描離子選擇電極技術(shù)(SIET)研究了鎂合金表面自愈涂層修復(fù)過(guò)程動(dòng)力學(xué),測(cè)試表明,浸泡在電解液中涂層陰、陽(yáng)極區(qū)的電流分布存在顯著差異,自愈后,涂層缺陷處的電流密度降低了約30倍。

研究者還開(kāi)發(fā)了一系列用于實(shí)時(shí)監(jiān)測(cè)涂層老化狀態(tài)的涂層傳感器。涂層阻抗傳感器基于EIS原理,通過(guò)對(duì)涂層施加小幅度正弦微擾,獲取涂層阻抗信息。孫曉光等[34]結(jié)合恒流激勵(lì)技術(shù),用加法器輸出去激勵(lì)涂層電極,借助信號(hào)相關(guān)積分法分析電位和電流信號(hào),計(jì)算被測(cè)涂層的電化學(xué)阻抗譜。利用特定頻率下的阻抗值隨時(shí)間變化的曲線,實(shí)現(xiàn)涂層老化狀態(tài)的實(shí)時(shí)監(jiān)控。CAI等[35]基于EIS和微電子技術(shù),研發(fā)了一款新型的涂層老化無(wú)損監(jiān)測(cè)儀和阻抗傳感器,該傳感器能夠在真實(shí)的服役條件狀態(tài)下,對(duì)涂層的早期失效進(jìn)行診斷,具有較高的靈敏性。MILLS等[36]基于EN技術(shù),設(shè)計(jì)了如圖2所示無(wú)需電連接基體金屬、可拆卸雙電解池的涂層老化監(jiān)測(cè)探頭,解決了傳統(tǒng)測(cè)量需要兩個(gè)單獨(dú)的工作電極來(lái)分別測(cè)量電流噪聲和電壓噪聲的難題。

圖 2單涂層基質(zhì)電化學(xué)噪聲測(cè)試裝置[36]
Figure 2.Measurement device for single substrate electrochemical noise measurement[36]

除了電化學(xué)方法外,還可以利用顯色劑和熒光劑對(duì)涂層進(jìn)行非電化學(xué)監(jiān)測(cè)。鞠鵬飛等[37]選用8-羥基喹啉、桑色素和香豆素三種物質(zhì)作為熒光指示劑,以監(jiān)測(cè)鋁合金涂層的腐蝕情況。8-羥基喹啉和香豆素兩種熒光指示劑都能準(zhǔn)確標(biāo)定出腐蝕位點(diǎn),熒光點(diǎn)的亮度、大小和數(shù)量可以直觀反映出涂層下基體的腐蝕程度,從而監(jiān)測(cè)鋁合金涂層的失效程度。此外,一些物理方法如聲發(fā)射技術(shù)、超聲波技術(shù)也廣泛應(yīng)用于涂層失效的在線監(jiān)測(cè)[38-39]。聲發(fā)射技術(shù)主要通過(guò)采集材料產(chǎn)生裂紋或變形時(shí)產(chǎn)生的應(yīng)力波進(jìn)行分析,尤其在熱障涂層失效的無(wú)損檢測(cè)方面應(yīng)用廣泛。ABARKANE等[40]采用聲發(fā)射技術(shù)對(duì)涂層下AA77075-T6基體進(jìn)行了原位絲狀腐蝕監(jiān)測(cè),揭示了金屬涂層界面分層的機(jī)制,這種非破壞性的監(jiān)測(cè)技術(shù)有效降低了涂層監(jiān)測(cè)難度。超聲波技術(shù)主要用于測(cè)量涂層厚度,以及涂層與基體之間的剝離程度檢測(cè)。ZHANG等[41]采用反射回波測(cè)量水中涂層厚度,該方法幾乎不受限于測(cè)試對(duì)象的尺寸、位置和材料的限制,可以準(zhǔn)確測(cè)量涂層厚度,有效節(jié)省了水下涂層檢查時(shí)間。

涂層失效監(jiān)測(cè)方法主要是為了實(shí)時(shí)或定期監(jiān)測(cè)涂層防護(hù)狀態(tài),以及時(shí)發(fā)現(xiàn)涂層缺陷并采取適當(dāng)?shù)木S護(hù)措施。然而,為了深入了解影響涂層耐久性的主要因素,必須對(duì)涂層的失效形式及機(jī)制展開(kāi)研究,從而為預(yù)防和減輕涂層失效提供相應(yīng)的理論指導(dǎo)。目前,關(guān)于涂層失效機(jī)制的研究方法主要有試驗(yàn)測(cè)試和理論模擬。以下將對(duì)這些研究方法進(jìn)行詳細(xì)介紹。

試驗(yàn)測(cè)試即通過(guò)一些試驗(yàn)方法計(jì)算與涂層防護(hù)狀態(tài)相關(guān)的動(dòng)力學(xué)和性能參數(shù),以此為依據(jù)來(lái)評(píng)估涂層的性能和老化情況。涂層內(nèi)部滲透的H2O、O2、污染物會(huì)導(dǎo)致涂層失效和金屬基體腐蝕,因此可將涂層的吸水率和滲透率作為評(píng)價(jià)涂層耐久性的關(guān)鍵參數(shù)[42-44]。HU等[23]測(cè)定了不同老化時(shí)間鋁合金/環(huán)氧涂層的EIS,并基于Brasher-Kingsbury公式和Fickian定律,推導(dǎo)出式(1)所示涂層電容(Cc)與H2O的擴(kuò)散系數(shù)(D)之間的關(guān)系。通過(guò)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行擬合計(jì)算,得到的H2O擴(kuò)散系數(shù)與文獻(xiàn)中的結(jié)果具有一致性。

式中:D為擴(kuò)散系數(shù);L為涂層厚度;t為時(shí)間;Cc(0)Cct分別為初始電容和給定時(shí)間t的電容;Cc(∞)為涂層中水飽和時(shí)的電容。此外,HU等[23]還發(fā)現(xiàn)涂層中O2和其他粒子的擴(kuò)散也符合Fickian定律,并利用公式(2)計(jì)算出各種滲透物種擴(kuò)散到金屬/涂層界面的時(shí)間(tinit),這些計(jì)算結(jié)果與阻抗衰減時(shí)間吻合,從而驗(yàn)證了上述計(jì)算方法的有效性。

式中:L為涂層厚度;D為擴(kuò)散系數(shù)。

BEDOYA-LORA等[42]研究了涂層內(nèi)部H2O和其他離子(Cl-,)的擴(kuò)散對(duì)涂層耐蝕性的影響。將4種有機(jī)涂層分別浸泡在0.6 mol/L NaCl和Na2SO4溶液中,利用EIS測(cè)試和等效電路分析獲得了電容值。通過(guò)對(duì)這些數(shù)據(jù)進(jìn)行Non-Fickian擴(kuò)散的非線性擬合,見(jiàn)式(3),計(jì)算H2O的擴(kuò)散系數(shù)以及涂層膨脹系數(shù)。

式中:Cc(0)Cct分別為涂層初始和任意時(shí)間t的電容;Cc(∞)為涂層中水飽和時(shí)的電容;SCc為膨脹系數(shù),n為CPE阻抗表示為復(fù)頻響函數(shù)時(shí)的指數(shù)項(xiàng);D為擴(kuò)散系數(shù);L為涂層厚度;t為時(shí)間。根據(jù)圖3中的結(jié)果可以發(fā)現(xiàn),考慮涂層的膨脹系數(shù)時(shí),使用Non-Fickian diffusion擴(kuò)散模型計(jì)算出的水滲透率與標(biāo)準(zhǔn)化方法(濕杯法)測(cè)定的結(jié)果一致。

圖 3采用菲克定律、非菲克模型和濕杯法所得4種涂層的滲透率比較結(jié)果(23 ℃)[42]
Figure 3.Comparison of permeability results of 4 coatings obtained by Fick model, non Fickean model (23 ℃) and wet-cup method[42]

試驗(yàn)測(cè)試能在一定程度上揭示涂層的老化過(guò)程。在考慮外部介質(zhì)和內(nèi)部填料在涂層內(nèi)的擴(kuò)散遷移、載荷、殘余應(yīng)力、熱沖擊,以及涂層內(nèi)部裂紋、分層、起泡等因素對(duì)涂層的影響時(shí),僅憑試驗(yàn)方法難以全面反映涂層失效過(guò)程的復(fù)雜性。為了深入認(rèn)識(shí)涂層的失效機(jī)制,采用理論計(jì)算和模擬仿真等對(duì)失效機(jī)制進(jìn)行建模分析也十分重要。

數(shù)學(xué)建??蓪?duì)涂層失效過(guò)程中某些行為(例如起泡、分層、開(kāi)裂、介質(zhì)擴(kuò)散遷移)的具體演化過(guò)程進(jìn)行分階段建模,然后對(duì)每個(gè)階段進(jìn)行計(jì)算以得到與特征參數(shù)有關(guān)的函數(shù)關(guān)系。最后對(duì)比計(jì)算結(jié)果與試驗(yàn)結(jié)果,驗(yàn)證數(shù)學(xué)模型對(duì)演化過(guò)程預(yù)測(cè)的可靠性。XU等通過(guò)薄涂層短時(shí)間的老化過(guò)程預(yù)測(cè)了厚涂層的降解行為,在進(jìn)行合理假設(shè)后,將涂層腐蝕損傷過(guò)程分為了如圖4所示4個(gè)階段,分別為有機(jī)涂層中微孔或微缺陷的形成、腐蝕性介質(zhì)滲透、基材腐蝕、以及基材腐蝕引起的涂層分層和劣化等,并針對(duì)每個(gè)階段建立了相應(yīng)的數(shù)學(xué)模型。通過(guò)計(jì)算最終得到了涂層開(kāi)始破裂時(shí)間tr。對(duì)比薄涂層鹽霧老化腐蝕失效時(shí)間與計(jì)算結(jié)果,發(fā)現(xiàn)在低頻0.01 Hz條件下,薄涂層的低頻阻抗值降低至臨界值(1.0×107Ω·cm2)時(shí)所對(duì)應(yīng)的時(shí)間近似等于tr值,其與涂層厚度的關(guān)系可以用方程y=4.89×1012x2表示。該模型可用于預(yù)測(cè)厚涂層的使用壽命[45-46]

圖 4有機(jī)涂層的建模過(guò)程:有機(jī)涂層中微孔/微缺陷的簡(jiǎn)化(a~e),腐蝕性電解質(zhì)通過(guò)微孔進(jìn)行滲透(f),基材的腐蝕(g),以及基材腐蝕引起的涂層分層和劣化(h)[46]
Figure 4.Modeling of an organic coating: the simplification of micropores/microdefects in an organic coating (a-e), the penetration of corrosive electrolyte throughthe micropores (f), the corrosion of the substrate (g) and the delamination and deterioration of the coating caused by the substrate corrosion (h)[46]

EFFENDY等[47]建立了一個(gè)宏觀滲透性水泡模型,如圖5所示。該模型預(yù)測(cè)了水泡不可逆的非線性生長(zhǎng)過(guò)程,最終導(dǎo)致涂層的破裂或分脫落,這一過(guò)程與涂層的力學(xué)性能和黏附性能密切相關(guān)。該模型還針對(duì)涂層分層現(xiàn)象,提出了一個(gè)臨界分層長(zhǎng)度的概念,超過(guò)該長(zhǎng)度將會(huì)導(dǎo)致涂層失穩(wěn)分層。此外,還觀察到碳鋼基體銹蝕與模型預(yù)測(cè)趨勢(shì)相一致。該模型還定義了3個(gè)無(wú)量綱參數(shù),可用于涂層施工設(shè)計(jì),防止涂層出現(xiàn)變形、破裂和分層等問(wèn)題。

圖 5涂層鼓泡的萌生-擴(kuò)展-破裂過(guò)程[47]
Figure 5.The initiation-propagation-termination process of coating bubbling[47]

HUANG等[48]為了研究涂覆金屬板材在成形過(guò)程中的涂層附著力損失,提出了一種預(yù)測(cè)拉伸引起的黏接損失的方法,并對(duì)方法進(jìn)行了驗(yàn)證。通過(guò)涂層金屬板試樣的拉脫試驗(yàn),發(fā)現(xiàn)軸向塑性變形會(huì)導(dǎo)致黏接性能下降。此外,還提出了一種基于虛擬界面裂紋模型的黏接勢(shì)分析方法,并使用該方法預(yù)測(cè)了兩種涂覆鋼板的黏接損失,預(yù)測(cè)結(jié)果與試驗(yàn)測(cè)量結(jié)果具有較好的吻合程度。

量子化學(xué)計(jì)算和分子動(dòng)力學(xué)模擬(MD)也是理論層面研究涂層失效機(jī)制的重要手段之一。賴帥光等[49]利用量子力學(xué)(QM)模擬、MD模擬、蒙特卡洛(MC)模擬等方法,對(duì)3種添加了不同抗氧化劑的丁羥聚氨酯體系進(jìn)行模擬研究,見(jiàn)圖6,基于3種抗氧化劑的解離自由能、分子擴(kuò)散系數(shù)等數(shù)據(jù),深入探究了3種抗氧化劑對(duì)提升涂層耐久性的作用機(jī)制。

圖 6三種晶胞計(jì)算模型的完整建模過(guò)程[49]
Figure 6.The whole process of constructing three kinds of unit cell calculation models[49]

CHOI等[50]通過(guò)MD模擬,研究了在不同應(yīng)變條件下TPU涂層的力學(xué)性能差異,結(jié)果表明:在100%的應(yīng)變情況下,模擬單元中開(kāi)始出現(xiàn)由拉伸斷裂引起的裂紋。隨著應(yīng)變程度提高,裂紋逐漸擴(kuò)展,導(dǎo)致黏結(jié)分子減少。此外,該研究還發(fā)現(xiàn)黏結(jié)分子的數(shù)量會(huì)隨著分子量的降低而減少,從而增加了發(fā)生拉伸斷裂的可能性。

除了利用QM、MD等方法在分子尺度研究涂層失效過(guò)程外,有限元分析方法也廣泛應(yīng)用于涂層失效的模擬計(jì)算中,特別是用于研究涂層失效過(guò)程中的表面裂紋擴(kuò)展和界面分層失效等現(xiàn)象。DU等[51]為了揭示水滲透對(duì)乳膠涂層失效過(guò)程的影響機(jī)制,在試驗(yàn)基礎(chǔ)上,借助有限元方法模擬了涂層中水的傳遞和裂紋擴(kuò)展過(guò)程中的應(yīng)力分布,發(fā)現(xiàn)水?dāng)U散會(huì)促進(jìn)涂層中裂紋的擴(kuò)展,從而促進(jìn)涂層失效。FEICKERT等[52]模擬了接縫和縫隙處的涂層失效過(guò)程,利用有限元計(jì)算了涂層間隙在拉伸和彎曲狀態(tài)下的二維應(yīng)變分布,發(fā)現(xiàn)狹窄縫隙的開(kāi)口不僅可能導(dǎo)致涂層延伸斷裂,還可能引發(fā)縫隙密封膠與基材角處的縫隙壁之間的黏合失效。這項(xiàng)研究有助于深入理解接縫周?chē)牟牧鲜袨?同時(shí)為缺口處填充材料和涂漆的選擇提供參考。ZHU等[15]基于有限元方法模擬涂層彎曲過(guò)程,比較了涂層厚度、顏料形狀、縱橫比以及顏料濃度對(duì)水性屏障涂料折疊失效的影響,發(fā)現(xiàn)增加涂層厚度和顏料負(fù)載量、增加顏料長(zhǎng)寬比以及漿料和顏料間模量差異等,都會(huì)增加涂層失效概率。

采用有限元分析研究涂層失效機(jī)制時(shí),通常使用預(yù)制裂紋,而未考慮涂層基體界面的剛度以及涂層和基體結(jié)合強(qiáng)度的問(wèn)題,可能也忽略了涂層的分層失效現(xiàn)象[53-54]。鄒夢(mèng)杰等[55]采用無(wú)預(yù)制裂紋的擴(kuò)展有限元方法(XFEM)和內(nèi)聚力(Cohesive)模型,精確模擬了Hertz接觸應(yīng)力下涂層的裂紋擴(kuò)展和分層失效過(guò)程。結(jié)果表明:涂層裂紋的形成包括萌生和擴(kuò)展兩個(gè)階段,涂層材料的彈性模量越大越容易產(chǎn)生裂紋且裂紋越深。此外,涂層開(kāi)裂和分層是相互影響的,分層會(huì)使涂層更易形成裂紋,但同時(shí)會(huì)減緩裂紋擴(kuò)展速率,而裂紋的存在會(huì)使涂層更易發(fā)生分層失效。

涂層失效動(dòng)力學(xué)與機(jī)制研究的目標(biāo)是實(shí)現(xiàn)涂層服役壽命的預(yù)測(cè),并為涂層的精準(zhǔn)維修更換提供重要參考,從而減少資源浪費(fèi)和降低維修成本。涂層壽命預(yù)測(cè)方法包括加速因子法、擬合法、壽命分布模型和神經(jīng)網(wǎng)絡(luò)等。

加速因子法通過(guò)室內(nèi)加速老化試驗(yàn)和室外試驗(yàn)建立兩者之間的相關(guān)性,利用加速因子(加速度系數(shù))來(lái)預(yù)測(cè)服役環(huán)境中的涂層使用壽命。ZHANG等[56]在三亞對(duì)船舶用涂料進(jìn)行了自然暴曬和人工老化試驗(yàn),通過(guò)對(duì)涂層表面形貌、光澤度、分子結(jié)構(gòu)和電化學(xué)阻抗參數(shù)的分析,討論了人工老化與自然暴露試驗(yàn)結(jié)果的相關(guān)性。發(fā)現(xiàn)自然暴曬60,150,300,360,450 d的結(jié)果與人工老化228,443,841,1 958,4 013 h的結(jié)果非常接近。汪鵬飛等[57]在對(duì)涂層加速老化與自然暴曬試驗(yàn)的相關(guān)性分析中,引入了當(dāng)量加速關(guān)系(AF)的概念,并將其定義為等效老化狀態(tài)下自然暴曬和加速老化時(shí)間的比值。

擬合法是基于試驗(yàn)數(shù)據(jù)預(yù)測(cè)涂層壽命的另一方法,它通過(guò)建立涂層老化過(guò)程中的某一性能參數(shù)與時(shí)間關(guān)系式,并以臨界失效條件作為失效時(shí)間的計(jì)算標(biāo)準(zhǔn)。李春濤等[58]依據(jù)熱重分析數(shù)據(jù),將TPU涂層材料質(zhì)量損失5%定義為閥值,獲得了其使用壽命tf(min)與服役溫度T(K)的關(guān)系式:lntf=15 700/T-30.78,并以此預(yù)測(cè)了不同溫度下TPU彈性涂層的使用壽命。鄧亮等[59]對(duì)海洋工程涂層的Si-CH3/Si-O-Si比值、表面能(E)和粗糙度(Ra)進(jìn)行統(tǒng)計(jì)分析后,將這些數(shù)據(jù)與涂層防污性能(Y1)進(jìn)行擬合,通過(guò)對(duì)比發(fā)現(xiàn)預(yù)測(cè)模型的相對(duì)誤差僅為4%。LOGANINA[60]研究了涂層老化過(guò)程中的濕潤(rùn)行為,發(fā)現(xiàn)損傷積累動(dòng)力學(xué)的試驗(yàn)數(shù)據(jù)與粉化程度和表面積之間存在相關(guān)性,并提出了一種分析方法,可以估計(jì)涂層在老化過(guò)程中缺陷面積的增長(zhǎng)速率,即涂層損傷累積程度與試驗(yàn)時(shí)間之間可用logistic曲線(或Pearl曲線)描述。

相較于簡(jiǎn)單的擬合法,涂層壽命分布模型有助于對(duì)涂層在實(shí)際環(huán)境中的失效情況進(jìn)行更精確的描述。CHOI等[50]使用ALTA軟件,建立了一種基于Arrhenius方程和Weibull分布的經(jīng)驗(yàn)預(yù)測(cè)模型,用于預(yù)測(cè)TPU在應(yīng)力條件下的使用壽命。并將抗拉強(qiáng)度降低至初始值的50%作為壽命預(yù)測(cè)的失效準(zhǔn)則,預(yù)測(cè)TPU約20 a后失效。該模型對(duì)于確定TPU的更換時(shí)間具有重要意義。ZHANG等[14]在加速暴露試驗(yàn)的基礎(chǔ)上提出了壽命分布模型,該模型可為定量描述橋梁防腐蝕涂層失效過(guò)程,預(yù)測(cè)橋梁鋼結(jié)構(gòu)防腐蝕涂層壽命提供有益參考。

神經(jīng)網(wǎng)絡(luò)模型是由大量的、簡(jiǎn)單的處理單元廣泛地相互連接而形成的復(fù)雜網(wǎng)絡(luò)系統(tǒng)。神經(jīng)網(wǎng)絡(luò)模型具有高度的魯棒性和容錯(cuò)能力,能夠充分逼近復(fù)雜的非線性關(guān)系,更加準(zhǔn)確地對(duì)涂層的壽命進(jìn)行預(yù)測(cè)分析[61-65]。劉新靈等[66]在研究多因素耦合作用下,飛機(jī)金屬結(jié)構(gòu)防護(hù)層的損傷行為和失效預(yù)測(cè)模型過(guò)程中,充分利用防護(hù)涂層在不同腐蝕環(huán)境中的電化學(xué)參量變化規(guī)律以及EIS變化與損傷形貌之間的對(duì)應(yīng)關(guān)系,建立了Kohonen神經(jīng)網(wǎng)絡(luò)模型。與傳統(tǒng)老化動(dòng)力學(xué)模型相比,該模型由于采用了自主學(xué)習(xí)網(wǎng)絡(luò)算法,預(yù)測(cè)精度提高了近50%。AKBARZADEH等[67]提出了一種基于人工神經(jīng)網(wǎng)絡(luò)(ANN)的數(shù)據(jù)分析計(jì)算方法,如圖7所示,用于模擬含不同量氧化多壁碳納米管(O-MWCNT)的改性溶膠-凝膠涂層的防護(hù)行為。他們?cè)跇?gòu)建的神經(jīng)網(wǎng)絡(luò)模型中采用單層隱層感知器,并使用Levenberg-Marquardt算法進(jìn)行學(xué)習(xí)算法優(yōu)化。研究結(jié)果表明,該模型能夠預(yù)測(cè)在不同暴露時(shí)間和O-MWCNT濃度下,硅烷溶液中涂層阻抗虛部的變化情況。此外,從數(shù)學(xué)和圖形的角度,也可驗(yàn)證該模型的可靠性和準(zhǔn)確性。

圖 7人工神經(jīng)網(wǎng)絡(luò)(ANN)的拓?fù)浣Y(jié)構(gòu)[67]
Figure 7.The topological structure of the ANN model[67]

系統(tǒng)介紹了涂層老化的監(jiān)測(cè)手段、失效機(jī)制的最新研究進(jìn)展以及涂層壽命的預(yù)測(cè)方法。隨著智能化分析技術(shù)的迅猛發(fā)展,涂層失效機(jī)制的研究正逐漸變得更加全面和深入。目前監(jiān)測(cè)手段和技術(shù)大多依賴于外部信號(hào)的采集,通過(guò)數(shù)據(jù)分析和模擬等手段來(lái)診斷涂層內(nèi)部的動(dòng)力學(xué)過(guò)程。然而這些方法存在一些明顯的不足,如因缺乏同步監(jiān)測(cè)數(shù)據(jù),無(wú)法提供可靠依據(jù)來(lái)反映涂層內(nèi)部的真實(shí)變化過(guò)程。此外,對(duì)于涂層界面關(guān)系的研究,如涂層內(nèi)擴(kuò)散介質(zhì)與填料之間的相互作用以及涂層與金屬基體界面的關(guān)系等,仍需進(jìn)一步深入。未來(lái)涂層老化的研究將更加依托于智能化監(jiān)測(cè)技術(shù)和信息化分析技術(shù),以彌補(bǔ)目前常規(guī)監(jiān)測(cè)和分析技術(shù)的不足,提供更全面、可靠的數(shù)據(jù)和信息,更好地理解和解決涂層老化問(wèn)題。




文章來(lái)源——材料與測(cè)試網(wǎng)