
分享:球磨時間對MoCoB金屬陶瓷組織與性能的影響
0. 引言
過渡金屬硼化物具有較高的強度、硬度、耐磨性和熱穩(wěn)定性,是目前較受關(guān)注的一種硬質(zhì)合金材料[1]。其中,由MoCoB化合物和金屬鈷組成的MoCoB金屬陶瓷兼具MoCoB化合物的高硬度、強度和耐磨耐蝕性能,以及金屬鈷的高韌性、塑性和高溫穩(wěn)定性[2],與廣泛使用的WC-Co硬質(zhì)合金相比,硬度和強度相當(dāng),密度卻顯著降低,綜合性能優(yōu)異,但在惡劣的磨損和腐蝕等環(huán)境下長期服役時,其性能和使用壽命仍面臨嚴重挑戰(zhàn)[3]。
YANG等[4]研究發(fā)現(xiàn):隨著鉬硼原子比增大,MoCoB相顆粒的截面形貌從六邊形長棒狀轉(zhuǎn)變?yōu)榈容S狀,MoCoB金屬陶瓷的硬度提高,抗彎強度先升后降,斷裂韌性降低;當(dāng)鉬硼原子比不小于1.08時,組織中出現(xiàn)呈三維網(wǎng)狀結(jié)構(gòu)的第三相Co7Mo6,當(dāng)鉬硼原子比為0.92時,金屬陶瓷的綜合性能最優(yōu)。YANG等[5]還發(fā)現(xiàn):鈷含量不同,鈷與MoCoB形成的共晶液相也不同,所得金屬陶瓷的形貌、物相組成和組織結(jié)構(gòu)存在差異;隨著鈷含量的增加,金屬陶瓷的相對密度和硬度上升,斷裂韌性降低。研究[6-7]發(fā)現(xiàn),球磨時間會影響球磨混合粉末的晶粒尺寸和元素分布情況,進而影響燒結(jié)后材料的組織結(jié)構(gòu)和性能。目前,未見有關(guān)球磨時間對MoCoB金屬陶瓷組織與性能影響的研究。為此,作者以鉬粉、鈷粉和硼粉為原料,對原料粉末進行不同時間的球磨后,采用真空液相燒結(jié)工藝制備了MoCoB金屬陶瓷,研究了球磨時間對其硬度和耐腐蝕性能的影響規(guī)律,擬為MoCoB金屬陶瓷的制備和應(yīng)用提供參考。
1. 試樣制備與試驗方法
試驗原料包括:鉬粉,純度不低于99.9%,粒徑為1 μm,長沙天久金屬材料有限公司提供;鈷粉,純度不低于99.9%,粒徑在1~3 μm,上海水田材料科技有限公司提供;硼粉,純度不低于99.9%,粒徑為1 μm,上海水田材料科技有限公司提供。按照物質(zhì)的量比為1∶1∶1進行配料,將配制好的原料粉末放入球磨罐中,加入無水乙醇,置于GMS-3-2型行星球磨機中進行濕磨,球磨時間分別為1,12,24,36,48 h,球磨轉(zhuǎn)速為275 r·min−1,球料質(zhì)量比為3∶1,磨球為直徑分別為3,6 mm的氧化鋯球;將球磨后的混合粉末在80 ℃下干燥6 h,過300目篩,隨后壓制成直徑12 mm、厚度約3 mm的圓片,壓力為200 MPa,保壓時間為2 min。將成型試樣放入GSL-1600X型真空燒結(jié)爐中進行真空燒結(jié),采用氬氣保護,燒結(jié)制度如圖1所示,在溫度達到1 000 ℃前升溫速率均為10 ℃·min−1,溫度達到1 000 ℃后調(diào)整升溫速率為5 ℃·min−1,隨爐冷卻。
采用Rigaku Ultima IV型X射線衍射儀(XRD)對混合粉末和燒結(jié)試樣進行物相組成分析,工作電壓為40 kV,工作電流為30 mA,掃描范圍為10°~90°,掃描速率為2 (°)·min−1,步長為0.02°。采用Scherrer公式[8],選擇XRD譜中最強峰計算晶粒尺寸。采用Hitachi TM3030型掃描電子顯微鏡(SEM)觀察混合粉末和燒結(jié)試樣的微觀形貌,并用附帶的Oxford Swift 3000型X射線能譜儀(EDS)進行微區(qū)成分分析。利用Image J軟件采用灰度法計算孔隙率[9],取5張視圖進行統(tǒng)計,取平均值。
采用HXD-1000TMC/ LCD型數(shù)字式顯微硬度計測試硬度,載荷為1.96 N,保載時間為15 s,測10個點取平均值。采用Autolab PGSTAT302 N型電化學(xué)工作站在質(zhì)量分數(shù)3.5%NaCl溶液中測試動態(tài)極化曲線與電化學(xué)阻抗譜(EIS),采用標(biāo)準三電極體系,參比電極為Ag/AgCl,對電極為鉑電極,工作電極為工作面積1 cm2的燒結(jié)試樣。測試前,將試樣置于質(zhì)量分數(shù)3.5%NaCl溶液中浸泡2 h。在動態(tài)極化曲線測試中,工作電極以1 mV·s−1的掃描速率進行極化。在電化學(xué)阻抗譜曲線測試中,測試電位在開路電位(OCP)的±10 mV區(qū)間內(nèi)波動,測試頻率為10−2~105 Hz。采用SEM觀察腐蝕后表面的微觀形貌。利用VASP軟件采用密度泛函理論計算費米能級和態(tài)密度。
2. 試驗結(jié)果與討論
2.1 混合粉末的微觀形貌
由圖2可知:球磨1 h后,鉬、鈷和硼顆?;旌喜痪鶆?,同種顆粒團聚現(xiàn)象明顯,顆粒呈大片狀;當(dāng)球磨時間延長到12 h時,鉬、鈷和硼顆粒的團聚現(xiàn)象減少,顆粒由大片狀分散成小片狀;當(dāng)球磨時間達到24 h時,混合粉末中仍存在少量鉬粉和鈷粉團聚的現(xiàn)象;當(dāng)球磨時間為36 h時,3種顆?;旌陷^均勻,僅存在少量鉬粉團聚現(xiàn)象;當(dāng)球磨時間達到48 h時,粉末顆?;旌系酶泳鶆?,未見明顯團聚現(xiàn)象。
2.2 混合粉末與燒結(jié)試樣的物相組成
由圖3可知:球磨未改變混合粉末的物相組成,仍由鉬、鈷和硼單質(zhì)相組成,未出現(xiàn)新相;燒結(jié)試樣均主要由MoCoB金屬化合物相和鈷相組成,未檢測到鉬相和硼相。隨球磨時間的延長,MoCoB相的衍射峰強度增加,說明MoCoB相的含量增加。鉬、鈷、硼粉末在燒結(jié)過程中會發(fā)生以下反應(yīng)[10]:當(dāng)溫度升至600~700 ℃時,鈷與硼反應(yīng)生成Co2B,當(dāng)溫度升至1 002 ℃時,鉬與Co2B反應(yīng)生成Mo2Co21B6和MoCoB,當(dāng)溫度繼續(xù)升至1 146 ℃時,鉬與Mo2Co21B6反應(yīng)生成MoCoB和鈷。因此,燒結(jié)試樣中主要存在MoCoB相和鈷相。未檢測到鉬相和硼相可能是因為鉬和硼以微量殘留或以中間相形式存在。MoCoB金屬化合物相的含量增加是由于球磨時間延長,顆?;旌细鶆?,在燒結(jié)過程中反應(yīng)更充分。
2.3 燒結(jié)試樣的微觀形貌
由圖4可知:隨著球磨時間延長,燒結(jié)試樣中的孔洞(無元素分布區(qū)域)數(shù)量減少,這是因為球磨時間的延長使得顆粒混合均勻,液相反應(yīng)得以更充分地進行,液相的流動性增強,減少了孔隙的產(chǎn)生;黑色顆粒主要由硼元素組成,這是因為球磨時間較短,導(dǎo)致部分混合顆粒無法充分接觸并在燒結(jié)過程中發(fā)生反應(yīng),從而保留下來。EDS測得球磨48 h條件下燒結(jié)試樣位置1處硼、鉬、鈷原子分數(shù)分別為29.11%,30.75%,39.34%,原子比接近1∶1∶1,推測燒結(jié)試樣中的淺灰色相為MoCoB相;位置2處硼、鉬、鈷原子分數(shù)分別為0,0,100%,推測燒結(jié)試樣中灰色相為鈷相。隨著球磨時間延長,鉬、鈷和硼元素的分布變得均勻。
由圖5可見,隨著球磨時間的延長,燒結(jié)試樣的晶粒尺寸和孔隙率下降。延長球磨時間使得粉末混合更加均勻,為燒結(jié)過程中MoCoB相的生成提供了更多形核點,因此晶粒細化[10];球磨時間的延長也提高了燒結(jié)過程中液相的流動性,從而減少了孔洞。
2.4 燒結(jié)試樣的硬度
由圖6可知,隨著球磨時間的延長,燒結(jié)試樣的硬度升高,當(dāng)球磨時間為48 h時達到2 935 HV,是球磨1 h時的2.16倍。試樣硬度主要取決于MoCoB相含量、晶粒尺寸[11]和孔隙率[12]。隨球磨時間延長,燒結(jié)試樣的MoCoB相含量增加,晶粒尺寸和孔隙率下降,因此硬度提高[8]。
2.5 燒結(jié)試樣的耐腐蝕性能
由圖7可以看出,隨著球磨時間延長,燒結(jié)試樣的自腐蝕電位升高,自腐蝕電流密度減小,耐腐蝕性能提高。
由圖8可見:燒結(jié)試樣的Nyquist曲線呈半圓狀,且隨著球磨時間的延長,圓弧半徑增加,說明試樣的耐腐蝕性能提高。高頻區(qū)燒結(jié)試樣的阻抗模值|Z|接近(約0.4 ?),該阻抗值可近似看作溶液電阻;隨著頻率f的降低,阻抗模值升高;隨著球磨時間的延長,阻抗模值的最大值增加,這說明球磨時間的延長可以提高MoCoB金屬陶瓷耐腐蝕性能。不同球磨時間下的燒結(jié)試樣的相位角-頻率圖中均出現(xiàn)2個峰值,說明MoCoB金屬陶瓷的電化學(xué)腐蝕體系具有2個時間常數(shù)。建立等效模擬電路對Nyquist曲線進行擬合,等效電路中:RS為溶液電阻元件;Rf為試樣表面的電阻元件;Rct為電荷轉(zhuǎn)移電阻元件;Qf為雙電子層電容元件;Qdl為非理想雙電層電容元件。擬合結(jié)果見表1,表中:RS為溶液電阻;Rf為試樣表面電阻;Rct為電荷轉(zhuǎn)移電阻;Qf為溶液與表面間雙電子層電容;Qdl為非理想雙電層電容??芍S著球磨時間的延長,燒結(jié)試樣的電荷轉(zhuǎn)移電阻增加,說明耐腐蝕性能提高,這與動電位極化曲線測試結(jié)果一致。
球磨時間/h | RS/(?·cm2) | Qdl/(F·cm−2) | Rf/(?·cm2) | Rct/(?·cm2) | Qf/(F·cm−2) |
---|---|---|---|---|---|
1 | 6.47 | 0.76 | 242 | 138 | 0.74 |
12 | 7.09 | 0.73 | 357 | 316 | 0.72 |
24 | 6.03 | 0.71 | 654 | 769 | 0.72 |
36 | 4.46 | 1.10 | 1 550 | 1 511 | 0.63 |
48 | 7.64 | 0.88 | 2 330 | 2 390 | 0.82 |
由圖9可知:腐蝕后,1 h球磨時間下燒結(jié)試樣表面的孔洞較多,48 h球磨時間下孔洞明顯減少;腐蝕表面的MoCoB相處分布著大量氧元素,鈷與氧元素的分布重合度較低,說明MoCoB相被優(yōu)先腐蝕。
由圖10可知,MoCoB相的費米能級EF(MoCoB)為12.035 eV,高于鈷的費米能級EF(Co)(10.719 eV),說明鈷失去電子所需要耗費的能量比MoCoB多,即鈷更難失去電子[13-15]。當(dāng)MoCoB相和鈷相接觸形成腐蝕電池體系時,電子會從MoCoB相中流向鈷相。此外,MoCoB相在費米能級附近的態(tài)密度比鈷相更大,說明MoCoB相的電化學(xué)活性更高。由此可知,在發(fā)生電化學(xué)腐蝕時,MoCoB相會作為陽極,而鈷相作為陰極。
理論上,作為陽極的MoCoB相含量越高,試樣的腐蝕程度越嚴重。然而,48 h球磨時間下燒結(jié)試樣中的MoCoB相含量最高,但此條件下的耐腐蝕性能卻更優(yōu)。這是因為一方面,MoCoB相不同于純金屬或合金,其發(fā)生腐蝕丟失電子后并不產(chǎn)生會脫離表面進入腐蝕溶液中的金屬離子,而是將氧原子吸附到MoCoB相表面形成致密的氧化物層,這在前文EDS面掃描得到的氧元素主要分布在MoCoB相處得到了證實。該氧化物層能夠隔絕腐蝕介質(zhì)與MoCoB相的接觸,使得MoCoB相轉(zhuǎn)變?yōu)殁g化狀態(tài)。處于鈍化狀態(tài)的MoCoB相會與周圍的鈷相發(fā)生腐蝕電極轉(zhuǎn)換,促使金屬鈷相發(fā)生腐蝕。另一方面,球磨時間48 h條件下燒結(jié)試樣中孔洞很少,腐蝕介質(zhì)相比其他條件下更難侵入。綜上,MoCoB金屬陶瓷的耐腐蝕性能歸因于孔隙率與MoCoB相含量的協(xié)同作用。隨著球磨時間的延長,燒結(jié)試樣中的孔隙率降低,腐蝕通道減少,同時MoCoB相含量增加,因此耐腐蝕性能提高。
3. 結(jié)論
(1)以不同時間球磨的鉬、鈷、硼混合粉末為原料燒結(jié)制備的MoCoB金屬陶瓷均主要由MoCoB金屬化合物相和鈷相組成。隨著球磨時間的延長,鉬、鈷、硼粉末混合更均勻,在燒結(jié)過程中反應(yīng)更充分,MoCoB相形核位點更多,燒結(jié)后晶粒尺寸減小,MoCoB相含量增加,同時燒結(jié)時液相流動性增加,試樣孔隙率降低。
(2)隨著球磨時間的延長,MoCoB金屬陶瓷的硬度提高,自腐蝕電位升高,自腐蝕電流密度減小,耐腐蝕性能提高。硬度提升歸因于MoCoB相含量的增加、晶粒尺寸的減小和孔隙率的降低,耐腐蝕性能提高則歸因于MoCoB相含量和孔隙率的協(xié)同作用。
文章來源——材料與測試網(wǎng)